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Synchronization and desynchronization under the influence of quasiperiodic forcing
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We study the influence of quasiperiodic forcing on synchronization and desynchronization using two
coupled quasiperiodically forced logistic maps as a paradigm. We show that due to the forcing the synchroni-
zation region in parameter space shrinks. The loss of transverse stability of the synchronized attractors leads to
desynchronization. Two types of such blowout bifurcations are described, namely, the blowout bifurcations of
synchronized quasiperiodic motion on invariant curves and synchronized strange nonchaotic attractors, both
yielding desynchronized chaotic attractors.
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[. INTRODUCTION bifurcation phenomena due to the influence of a quasiperi-
odic driving force.

Synchronization phenomena of coupled chaotic systems In quasiperiodically forced systems a special type of at-
as well as mechanisms leading to desynchronization haveactors, namely, strange nonchaotic attract@&NAS)
attracted much interest in the last decade of the second mipresent a characteristic dynamical behavior in between regu-
lenium. Considering interacting identical chaotic oscillators,larity and chaos. This type of dynamics has been first de-
different synchronization phenomena can be observed in decribed by Greboget al.[13] and can be defined as a closed
pendence on the coupling strength: We speak about pha#evariant attractive set which is not piecewise differentiable
synchronizatiorf1] if the oscillators adjust their phases such and for which the typical orbits have nonpositive Lyapunov
that the mean frequencies of the chaotic oscillations coinexponents. Thus, SNAs have a fractal structure like usual
cide, whereas their amplitudes vary chaotically in time. Forstrange attractors, but there does not exist any sensitivity
increased coupling strength one can achieve a complete syWith respect to changes in the initial conditions: no exponen-

chronization(2]. In this case, not only the phases but also thdial dive_rgence_ of_t_rajectories can be_observed. The property
amplitudes develop in precisely the same way. The motion off nondifferentiability has been used in REf4] to construct
method for distinguishing between SNAs and regular at-

the two coupled systems takes place in an invariant subspae

f1h Th n f coml nchronizatioctors in quasipgr'iodically force_d systems. This method re-
of the state space. The concept of complete synchronizat t[ﬁ s on the sensitivity of SNAs with respect to the phase of

has been generalized by releasing the requirements of tq e external force and is used here to identify SN@®. be

atctugl _equahty Olf the r\]/arla_\b Iet_s of t:\he dcouple_d lsystgngf. In ore specific: In contrast to regular attractors, the derivative
stead, in general synchronization, the dynamical vanables Qf ;, respect to the phase of the external driving grows un-

both subsystems obey a certain functional dependEid). 1,5 ngedly in the case of SNA. In the present paper the
Not only the types of synchronization were of interest, bulgyangeness of nonchaotic attractors is detected via the crite-
also the mechanisms leading to the loss of chaotic synchrgjo of phase sensitivity. The emergence of SNAs can be
nization. Assuming the existence of a completely synchrogypected in the synchronized state as well as in the nonsyn-
nized chaotic attractor, then different invariant sets in thechronized one.
invariant subspace can become transversally unstable in the The coexistence of synchronized and nonsynchronized at-
transition to a desynchronized state: First, particular unstablgactors in some regions of parameter space is important for
periodic orbits embedded in the synchronized chaotic attracestablishing the type of transition to a nonsynchronized state.
tor lose their transverse stability giving rise to the emergenc&he transition occurs via a blowout bifurcation when the
of riddled basins(riddling bifurcation [5,7]). Second, the synchronized attractor loses its transverse stability. The co-
whole attractor in the invariant subspace loses its transversxistence of two SNAs, synchronized and nonsynchronized
stability in average leading to a blowout bifurcatif87]. has been demonstrated recently, for a small range of param-
In this paper we study the influence of quasiperiodic driv-eters in the system of two coupled quasiperiodically forced
ing on synchronization and the different transitions to a nondogistic mapg15]. In contrast to our present investigations, a
synchronized state. As a first approach it has been shown thabnlinear coupling and a nhonsymmetric quasiperiodic exter-
synchronization can appear in quasiperiodically forced sysnal forcing has been applied in R¢iL5].
tems in Ref.[8]. We use two quasiperiodically forced Due to the presence of quasiperiodic forcing we obtain
coupled logistic maps as a paradigm. The general dynamiashanges in the dynamical behavior and in the types of tran-
of two coupled logistic maps without forcing has been ex-sitions to a nonsynchronized state. The dynamics of coupled
tensively investigated9—11]. In Ref. [12] this system has quasiperiodically forced maps is very rich: quasiperiodic be-
been considered as an application to interdependent opdravior with two and three incommensurate frequencies,
economics. Our main focus is the study of the changes in thphase locking phenomena, strange nonchaotic and chaotic
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attractors can be found. Moreover, the dynamics can takEor zero amplitude of the quasiperiodic drivings=0, the
place on an invariant subspace, the diagonal pl@nhe two equations of Eq(2) become uncoupled. We obtain the
={(x,y,0):x=y}, x andy denote the states of the two sub- well-known logistic mapx,,, 1= ax,(1—x,) which displays
systems, respectively, arttis the phase of the external driv- a period-doubling cascade to chaos as the bifurcation param-
ing. In this invariant subspace the motion of both coupledeter« increases. Thus, far=0 the synchronized dynamics
maps is fully synchronized. We focus on this synchronizeds either regulaperiodig or chaotic. As soon as the driving
behavior and discuss the possible mechanisms for the loss o switched on é>0), the periodic orbit$, of the logistic
synchronization when the synchronized state becomes transiaps are transformed into invariant curves mapped into each
versally unstable. We show, in particular, which transitionsother cyclically with the periok. We will denote them by
from synchronized to nonsynchronized behavior can be obkIC. We would like to note that in invertible maps the same
served in the case afonchaoticattractors inD. types of transitions are expected to occur though their study
The outline of the paper is the following. In Sec. Il we is a bit more complicated. In this case the invariant curves in
introduce the model and investigate the influence of thénvertible maps can be considered as Poincaetions of
strength of quasiperiodic driving on the size and the shape dbri in flows in contrast to the invariant curves observed in
the synchronization region in parameter space and on bifuroninvertible maps. But in the literatuféd6,17 often the
cations taking place for synchronized attractors. Then, iterm torus is used for an invariant curve also in noninvertible
Sec. Il we study, in more detail, which types of attractorsmaps. To avoid confusion, we use the terms “torus” and
can occur in the synchronization region and use the phastorus doubling” in the following only if we refer to articles
sensitivity method[14] for distinguishing between regular where these terms are used.
motion and SNAs. We find that the synchronized motion can The dynamics of the quasiperiodically forced logistic map
coexist with the nonsynchronized one. Parameter regions dfas been investigated from different points of view in Refs.
multistability are obtained in Sec. IV. The bifurcations of the [16,17]. Heagy and HammglL6] have described notable ef-
synchronized attractors under quasiperiodic forcing leadindects of the quasiperiodic driving, e.g., bifurcation points of
to a loss of synchronization are described in Sec. V. Weorus doubling are shifted to larger valuesagfthe threshold
discuss several types of blowout bifurcations whose charader chaos is lowered and the torus-doubling cascade is trun-
teristics will be analyzed in Sec. VI. In particular, we dem- cated. Kuznetsoet al.[17] investigate in detail the terminal
onstrate two types of this bifurcation, namely, transitionspoint of torus doubling depending on the forcing amplitude.
from synchronized quasiperiodic motion and synchronizedNVe will show that the effects of quasiperiodic forcing in the
SNA to nonsynchronized chaotic attractors. Finally, we sumsystem of two coupled logistic maps are similar to those of a

marize our findings in Sec. VII. single map under the influence of an external quasiperiodic
forcing. Moreover, beside quasiperiodic and chaotic motion
Il. MODEL we find the existence of strange nonchaotic attradi®h$A)

. . . as a characteristic type of synchronized dynamics caused by
We consider a system of two coupled logistic maps Wh'Chquasiperiodic driving.
are externally forced, For system (1), we determined the regions in the
(@, B)-parameter plane where synchronized dynamics can
occur for different values of the external forcing amplitude
1) e. To this end, the transverse Lyapunov exponent is calcu-
lated as

Xn+1= aXp(1=X,) + B(Yn—X,) + €cog2mh),),

Yn+1=aYn(1=Yn) + B(X,—Y,) +ecog2m0,),
0ns1= 60+ w(mod 1),

1 N

where the parametet is the strength of nonlinearity3 is A= lim = D In|f ) (x) — 28], 3
the coupling strengths and w are amplitude and frequency N—e ' n=1
of the external driving force, respectively. Throughout the
paper the frequency is chosen to be equal to the inverse of where f; denotes the derivative of the logistic function
the golden meam=(\/5—1)/2, i.e., the driving is quasip- f.(X)=ax(1—x) with respect tox. Negative values of ,
eriodic. characterize the region in parameter space where the syn-

In general, the dynamics takes place in the threechronized attractor is at least weakly stable or stable in Mil-
dimensional phase spacg,y,6). Stable synchronized dy- nor sens¢l18]. In the case of a synchronized chaotic attractor
namics can be observed in an invariant two-dimensional subA® weak stability means tha® is transversally stable in
spaceD ={(x,y, #):x=y}. Such synchronous motion can be average, i.e. almost all trajectories A are transversally
found in some region of parameteis 3, ande. Thus, the stable. For a nonchaotic attractor b weak stability coin-
synchronized attractor lives on the diagonal pl&nend the  cides with Lyapunov stability.
dynamics on it is governed by the single logistic map with  To characterize the inner dynamics of the synchronized

quasiperiodic forcing attractor, the longitudinal Lyapunov exponent
Xn+1= aXp(l—X,)+ecog270,), LN
Nj=lim = 2 Il (xo)] @
0n+1: 6n+ Q)(mod 1) (2) N— o0 n=1
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FIG. 1. The region of synchronized motion in the,3)-parameter planéchaos—dark grayfor (a) e=0 (periodic orbits—light gray
(b) €=0.003(invariant curves—Ilight gray (c) e=0.03, and(d) e=0.1. The little box of pane(c) is shown enlarged in Fig. 2

has to be calculated. It measures the strength of exponentiaynchronized attractdmgray region in Fig. (a)] is either a
divergence of trajectories along the diagonal. The synchroperiodic orbit(light gray region or a chaotic attractofdark
nized attractor is chaotic if the longitudinal Lyapunov expo-gray region. The period-doubling cascade is infinite and the
nent is positive. With the variation of a system parameter thdines of the doubling bifurcation are parallel to tBeaxis at
synchronized attractor loses its transverse stability leading tealues ofae where the period doublings in the logistic map
nonsynchronized behavior. This bifurcation, called blowouttake place. The synchronization region has a complicated
bifurcation, occurs whei; becomes positive. internal structure and includes islands which correspond to
Afterwards, the synchronized invariant set is a repellerthe periodic windows of the maf, .
i.e., typical trajectories will be repelled from it and will ap-  For >0 the synchronized periodic orbits are transformed
proach some other attractor in phase space or will diverge timto smooth invariant curves of corresponding periodicity.
infinity. Blowout bifurcations are detectable by monitoring We observe doubling bifurcations of invariant curves instead
the transverse Lyapunov exponent when the system pararof period-doubling bifurcations of periodic orbits. Figures
eter is varied]\ | changes its sign from negative to positive 1(b), 1(c), and 1d) demonstrate that the doublings of invari-
at the moment of blowout bifurcation. The stable dynamicalant curves are delayed wit#>0, i.e., they occur at larger
regime after the bifurcation can be characterized by the twwalues ofa. As it is known[17], the doubling cascade of tori
Lyapunov exponents of the new born asynchronous attractgin our example: invariant curviss truncated. This trunca-
A®@ _|f the larger of both Lyapunov exponents is positive tion corresponds to a successive cutoff of the branches of the
(Amae>0) thenA® is a chaotic attractor. tree-like synchronization region. Depending on the ampli-
To illustrate the effects of external quasiperiodic driving tude of quasiperiodic driving, branches of the tree are cut-
on system(1l), we restrict ourselves on four values of the off, first those corresponding to the stability region of invari-
driving amplitudee. Figures 1a), 1(b), 1(c) and Xd) show  ant curves with higher periodicity. The transition to chaos via
the region in the &, 8)-parameter plane where the synchro- SNA can be observed just inside the region of weak stability.
nized attractor is weakly stable for driving amplitudes Note also that even at small forcing strength 0.003 most
=0, €=0.003,e=0.03, ande=0.1, respectively. This syn- islands of weak stability, separated from the main bifurcation
chronization region has a treelike structure, whose sizéree, vanish. Moreover, due to the cutoff of the branches of
slowly decreases, and small branches are cutoff with increashe synchronization tree, the synchronization region shrinks
ing external driving forcee. In the unforced case=0, the in size. As a consequence it becomes more and more difficult

026202-3



NEUMANN et al. PHYSICAL REVIEW E 67, 026202 (2003

30— to chaotic behaviofdark gray. The regions of different dy-
8 namical regimes have been estimated by computing the lon-
gitudinal Lyapunov exponent, which is positive for chaotic

i Cl . N .
3.55 7 SNA HAO% N attractors but negative for SNA and quasiperiodic motion. To
o 1 ' i distinguish between the latter two attractors, both with nega-
— x 3 tive Lyapunov exponent, one has to analyze the sensitivity of

3.50 7 N the attractor with respect to phase variation of the external
1 i force. The method to appl{suggested in Refl14]) is based
3.45 1 21C «(2) i on the property of SNA to be a nonsmodftactal) invariant
T set which is not piecewise differentialieee the definition of
] i an SNA given in Ref[13]). It consists of an attempt to
3401 : . T . I calculate the derivative with respect to the external phase.
This derivative is bound in the case of a smooth attractor,
0.2 -0.1 0.0 BO'I 02 03 while in the case of SNA, the calculated values of the de-
rivative cannot be bound, since this derivative in fact does
FIG. 2. Enlarged box from Fig.(#), different gray scale denotes NOt exist. SNA and invariant curves have been distinguished
different dynamical behavior, two invariant curves 2light gray), numerically using this property.
SNA (gray), and chaogdark gray. The crosses mark the positions ~ To illustrate the dynamical regimes of systei), we
for which the representants of the different dynamical behaviopresent attractors calculated at three parameter points marked
have been calculate@ee Fig. 3. by crosses in Fig. 2. Figurega, 3(b), and 3c) show char-
acteristic examples of the different types of synchronized
to obtain synchronized motion when the forcing is increaseddynamics, i.e., smooth invariant curves, SNA, and chaotic
For e=0.1 the synchronization region ends alreadyaat attractor, for three values of the nonlinearity parameter
~3.5[Fig. 1(d)], and fore= 0.3 synchronization cannot be =3.45, @,=3.51, a3=3.53, and coupling parametgs
found at all. Thus, the synchronized motion is suppressed fo 0.1.

a sufficiently high amplitude of quasiperiodic forcing. These attractors aKat least weakly stable, i.e., the trans-
verse Lyapunov exponent is less than zero. The invariant
IIl. SYNCHRONIZED DYNAMICS curves[Fig. 3@] and the SNAFig. 3(b)] have also negative

longitudinal Lyapunov exponent while for the chaotic attrac-

There are different types of synchronized dynamics, i.e.tor [Fig. 3(c)] it is positive.
dynamics on the diagonal plane. It is governed by system The mechanisms leading to strange nonchaotic behavior
(2), and hence does not depend on the coupling pararfeter in the system of two coupled quasiperiodically driven logis-
Which type of synchronized attractor occurs, dependsjsf  tic maps are the same as for the single logistic map under
fixed, on the value of nonlinearity parameteonly. Lines of  quasiperiodic driving, because the synchronized dynamics
doubling bifurcations of smooth invariant curves are paralletakes place in the two-dimensional subspaxey,#). The
to the B axis (see Fig. 1 transition from two-frequency quasiperiodic motigon 2

To discuss the attractor types in detail we choose a fixethvariant curves 2ICto SNA has been found to be related to
driving amplitudee, say e=0.03. The doubling cascade of the truncated torus-doubling cascade: A collision of the
invariant curves is truncated just before the second doublingstable doubled-curve 2IC with its unstable parent 1IC has
We find in the synchronization region either 1 or 2 invariantbeen found for the parameter values shown in Fig. 3. With
curves(1IC or 2IC), or SNAs or chaotic behavior. Figure 2 increasing parameter, the two invariant curves 2ICFig.
shows a blowup of the little box in Fig.(d which includes 3(a)] become more wrinkled and come closer to the unstable
transitions from quasiperiodicitflight gray) via SNA (gray) invariant curves 11C from which they were formerly born by

10 a) 1.0 )
X \_/\/—’\ x
0.0 0.0 0.0
0.0 0 Lo 0.0 0 190 0.0 0 1.0

FIG. 3. Representants of the dynamics in the region of synchronized dynamics. The panels correspond to the points marked by crosses
in the bifurcation diagram in Fig. 2 g8=0.1,e=0.03, and at different values af. Panel(a) shows two invariant curves representing a
period-two attractor atv=3.45, panelb) represents a strange nonchaotic attractaz-aB.51, and pane(c) represents a chaotic attractor
at «=3.53 as possible types of synchronized motion.
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The borderline of the gray bifurcation tree corresponds to
the transverse instability of the synchronized attractor. Pass-
ing this curve by varying the parametessand/or 8, the
dynamics in the diagonal plari& becomes transversally un-
3.4 - L 7 - stable(the transverse Lyapunov exponent becomes posi-
tive). As a result, either a new asynchronous attractor con-
taining the formerly transversally stable synchronized
| | solution appearsgblowout bifurcation or the trajectory can
Ol 3.2- . L approach another, asynchronous attractor or diverge to infin-

] : ity. The regionA%® in Fig. 4 is the region of the existence of
an asynchronous two-piece attractor outside the diagonal
plane. Thus, the intersection of the synchronization region of
two invariant curveg2IC) (gray) with the regionA® is a

3.0 -
region of bistability. Depending on the initial condition either
the synchronous or the asynchronous attractor can be ob-
11C .
| tained.
2.8 For a<a.~3.023425 the left border of the regiok,”

T T T T T T T T T

coincides with the line corresponding to the loss of the trans-
-0.8 -0.6 -04 -0.2

B : : : verse stability of the synchronized invariant curve 11C. Here,
a supercritical transverse doubling takes place. The invariant

curve 1IC loses its transverse stability giving rise to the
emergence of an asynchronous two-piece attractor, consist-
ing of two invariant curves. They map one into another, rep-
resenting a period-two attractor. Such type of synchroniza-
tion loss takes place when the border of the bifurcation tree
is passed along path | in Fig. 4 .

As already mentioned, for larger values ®f the trans-
verse instablity curve intersects the existence regigfh of

FIG. 4. The region of weak stability of synchronized attractors
(coded in same gray scale as in Fig. i@ the («,B)-parameter
plane fore=0.03 and bifurcation lines of the asynchronous attrac-
tors.

a doubling bifurcation. At the bifurcation point they finally
collide with the unstable parent in a dense sef @hlues but

notin all values ofd. As a result, an SNAis observeHig. the nonsynchronized two-piece attractor. Let us cross the
3(b)]. Further increasing of the bifurcation parametdeads . : R T )
()] g P border of the bifurcation tree with= 3.1 fixed, ang3 varied

to a chaotic attractdiFig. 3(c)]. Finally, whena is so large A (@)

that\, becomes positive, the chaotic attractor in the diago2/0nd Path Il'in Fig. 4. To the left of regiof;™ the synchro-

nal plane loses its transverse stability and the trajectory eftized invariant curve 1IC, already being unstable along the
ther approaches another attractor outside the diagonal plafgonal, becomes additionally transversally unstable, giving
(discussed in Sec. or diverges to infinity. rise to an asynchronous attractor consisting of two invariant

It should be mentioned that in general for systems whos&Urves- emerged by a subcritical bifurcation from 1IC. After

undriven counterparts exhibit a period-doubling cascade t&1iS Pifurcation the two mvarlantar);urves are not stable, but
chaos also other mechanisms of transition to SNA are podhey stabilize at the left border @€ . Moreover, the loss of
sible as the fractalization route to SNA by Nishikawa andtransverse stability of 1IC leads to the emergence of a repel-

Kaneko[19], and the intermittency route to SNAs by Prasad!ing tongue that develops from 1IC. Due to the quasiperiodic
et al.[20]. driving, a dense set of tonguéwith respect tog) appears,

and the trajectory is transversally repelled from the synchro-
nized invariant curve. Therefore, after entering the region of
bistability (intersection of regions 2IC andl$®), it depends
on the initial conditions which attractor is approached by the
The coexistence of an attractor outside the diagonal wittirajectory, the two-frequency quasiperiodic motion on two
the synchronized attractor plays a crucial role for the type ofnvariant curves either in the diagonal plaDeor outsideD.
transitions in the moment of a loss of transverse stabilityFigure §a) shows the projection of both possible types of
Therefore, we should first analyze whether there exist attracttractors onto thex,y) plane, as well as their basins of
tors out of the diagonal in an appropriate parameter rangettraction to vizualize the repelling tongue, for parameter
which contains the curve of synchronization loss. The correvalues a=3.1, 3=0.06, and fixed driving amplitudes
sponding nonsynchronous dynamical behavior might be & 0.03.
guasiperiodic motion on invariant curves as well as chaotic At the parameter value= 3.1 along path Il the transverse
or strange nonchaotic behavior. instability curve lies inside the regioA(za). Varying B be-
The gray region in Fig. 4 shows the region of weak sta-yond the border of the gray regigregion of transverse sta-
bility of the synchronized attractor in thex(B8) parameter bility of two invariant curves 2I¢ all observed trajectories
plane for €=0.03. The horizontal black line atr, start to approach the existing asynchronous attractor. The
~3.023425 denotes the first doubling of invariant curvessynchronized two invariant curves have lost their transverse
(21C—2IC) in the invariant subspade. stability in a subcritical transverse doubling bifurcation when

IV. COEXISTENCE OF SYNCHRONOUS AND
ASYNCHRONOUS MOTION
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FIG. 5. Projection of attractors onto the,{) plane at parameters=0.03, «=3.1, and at different values ¢8: (a) for 3=0.06
quasiperiodic motion on two invariant curves either synchronibagin is dark grayor nonsynchronizedbasin is light gray, (b) for 8
=0.22 asynchronous two-piece chaotic attractor, @néor 8= 0.3 asynchronous one-piece chaotic attractor arising after the merging of the
formerly two-piece attractor. In all examples, the basin of the attractor at infinity is left blank.

passing the border of the bifurcation tree. For the asynchroahich shows the coexisting synchronized and asynchronous
nous attractor we find that it undergoes a number of bifurcaattractors and their basins of attraction for a certasection
tions asB increases towards the right border of regid$? (0=0) shortly before the boundary crisis of the asynchro-
to become an asynchronous two-piece chaotic attractor. Figrous attractor at parameter values 3.22 and3=0.182. To
ure 5b) shows the chaotic attractor, obtained 6=0.22  the right of the region of bistability only the synchronized
anda=3.1. It grows in size with increasing and finally the  attractor 2IC is stable inside the synchronization reggmay
two pieces merge wheg reaches the right border @f(za)_ region in Fig. 4. The second bifurcation line crossed with
Beyond the right border og(za) we observe an asynchronous increasingg above the vertex corresponds to the border of
one-piece chaotic attractor including the diagonal plane the synchronization region. Here, a blowout bifurcation of
Attractors of this type exist in the parameter regiaf)  the synchronized attractor can be observed. This bifurcation
which is shown in Fig. 4, too. See Fig(ch for an example of ~lé@ds to an asynchronous attractor which includes the diago-
an asynchronous chaotic attractor including the diagondh@l and is considered in Sec. V in more detail.
plane at parameter valugs=0.3 anda=3.1. The asynchro-  The dashed regioh{® in Fig. 4 marks the region in
nous attracting set continues to grow in sizefamcreases («,B)-parameter plane where the asynchronous four-piece
until it finally touches its basin boundarpoundary crisis ~attractors exist. This type of attractor does not coexist with
line). After the boundary crisis, the asynchronous attractosynchronized attractors; since the regigi’ does not inter-
disappears, and the trajectory diverges to infinity. sect the gray bifurcation tree. The lower borderﬁéﬁ) co-
When following path 1l after having entered the region incides with the transverse instability curve of the bifurcation
A® | we pass two different bifurcation lines meeting at atree. Passing the curytor example, along path Il in Fig.)4
vertex point @, 8)~(3.2,0.2) in the parameter plane marked the synchronized two invariant curves become transversally
by a fat black dot in Fig. 4. Let us discuss this vertex point inunstable in a supercritical transverse doubling bifurcation
more detail. A schematic representation of this vertex includyielding an asynchronous attractor consisting of four invari-
ing all the different bifurcation lines that meet there is shownant curves. Asx increases the attractor undergoes some bi-
in Fig. 6. We have to distinguish two different scenarios
when changingB with « fixed above or below the vertex o
point, respectively. Below the vertex point, fr<3.2, we
cross first the border of the gray synchronization region be-
ing the line of transverse instability of the synchronous at-
tractor in the diagonal. After this crossing the synchronous
attractor is unstable and all trajectories are attracted by the 3.2
asynchronous attractor out of the diagonal, which consists of
two pieces. At the second bifurcation line these two pieces
merge and a one-piece asynchronous attractor is formed.
Above the vertex, fow>3.2, we cross first the right bor-
der of the dashed regioh(za) inside the gray synchronization
region (Fig. 4) limiting the region of bistability. At this line
the asynchronous attractor out of the diagonal undergoes a
basin boundary crisis and disappears. To illustrate this FIG. 6. Schematic representation of the four different types of
boundary crisis, which is different from the boundary crisisbifurcation lines meeting at the parameter point )~ (3.2,0.2)
beyond which trajectories go to infinity, we present Fig. 7marked as a fat black dot in Fig. 4.
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1 S — along path 1V, the transverse Lyapunov exponent
] e [ changes its sign. Accordingly, the synchronized two invariant
‘ curves become transversally unstable, and we observe a
blowout transition to a nonsynchronized attractor. The maxi-
mal Lyapunov exponent ., after the transition is positive,
hence the asynchronous attractor is a chaotic one. The asyn-
chronous chaotic attractor grows in size @sncreases and
vanishes again in a boundary crisis.

For larger values ofr we observe a blowout bifurcation
o with different features. This type of transition sketched by
N | path V in Fig. 4 may yield to either an asynchronous chaotic
L attractor or an asynchronous SNA. Let us first consider the
{ Ny case of blowout transition to an asynchronous chaotic attrac-
1 auf . ( " tor (Fig. 9. The longitudinal Lyapunov exponeny is less
oo X T T T W [ than zero and does not change its value since it does not
depend on the varied bifurcation parameger It only de-
pends ona which is kept constant along pathin Fig. 4.
Therefore,\ is omitted in Fig. ). At 8~0.1715, \|

FIG. 7. The asynchronous chaotic attractor out of the diagonathanges its sign from negative to positive. Then, the syn-
and its basin of attraction in light gray€0.03, «=3.22, and8  chronized two invariant curves become transversally un-
=0.182) shortly before its boundary crisis. The two crosses marktable. The maximal Lyapunov exponext,., coinciding
the position of the synchronized two invariant curves and their bayjith the transversal one before the blowout transition, is
sin is shown in dark gray. Both attractdithe synchronous and the positive but small in a narrow parameter rangesobeyond
asynchronous onepresent a period-two attractor. The attractors asina plowout bifurcation curve. The asynchronous chaotic at-
well as their basin of attraction are presented for éhsection 6 tractor [Figs. 9¢) and 9d)] still represents an attractor of
=0. period two, including a part of the diagonal plabeThe size

. ) ~of this attracting set emerging in a supercritical blowout bi-
furcations to become an asynchronous four-piece chaotic afgrcation from quasiperiodic motion on 2IC is small. It is

tractor. The latter one merges to an asynchronous two-pieG@stricted to a narrow region near the formerly synchronized
chaotic attractor including a part of the diagonal pldde  sojytion. With increasingd, we observe a relatively sudden
when entering the regioA'®. The resulting attractor grows growth in the magnitude of the maximal Lyapunov exponent
in size asa increases and finally touches its basin boundary, - which corresponds to a second bifurcation. Beyond this
and disappeargboundary crisis Thus, it is the same topo- pjfyrcation the asynchronous chaotic attractor increases
logical situation as has been discussed above for the regiqﬁhicmy in size. Additionally, it consists now only of one
AP piece including the diagonal plari2 [Figs. 9e) and 9f)].
This bifurcation looks like an interior crisislike phenomenon,
V. BLOWOUT TRANSITIONS but seems to hgve some different properties as explained
below. A further increase oB leads to a further growth of
We have demonstrated in the preceding section, that syrthe attractor size until the boundary crisis is reached. After
chronized attractors can coexist with asynchronous ones ithe boundary crisis all observed trajectories diverge to infin-
an appropriate region of they(8)-parameter planéFig. 4). ity.
As already mentioned, the characteristics of bifurcations For slightly different values ofa, the previously de-
from synchronized to nonsynchronized behavior changes acribed blowout transitiofclose to path V in Fig. #can be
the vertex point considered in Sec. IV. Above the vertexalso of another type. The blowout transition to an asynchro-
point (a,8)~(3.2,0.2), we find a blowout transition leading nous attractor can go via SNA, as illustrated by Figgato
to a new asynchronous attractor which includes the diagondlQ(e). By increasingB we observe again a blowout transi-
planeD or some part oD. Let us discuss first the blowout tion, the transverse Lyapun@y, exponent becomes positive.
transitions from synchronized two invariant curves to a non-The maximal Lyapunov exponent coincides with the trans-
synchronized chaotic motion, corresponding to the transiverse one before the blowout bifurcation. After the bifurca-
tions along paths IV and V in Fig. 4. tion, \ nax DECOMeES negative again in a narrow intervapBof
Along path IV we observe a blowout bifurcation which The attractor after the transition has a strange geometrical
corresponds to a direct transition from synchronized quasipstructure, representing a period-two SNA including a part of
eriodic motion to nonsynchronized chaotic motieee Fig. the diagonal plan®. It is restricted to a very narrow region
8). This is to the best of our knowledge a type of blowoutaroundD. Note, that the magnitude of Lyapunov exponents
bifurcation which has not been observed in unforced casess in the order of 103. Moreover, the structure of the SNA is
First, the transverse Lyapunov exponantis less than zero comparable to that of the chaotic attractor considered above.
as well as the longitudinal Lyapunov exponantFig. 8e)]. This transition from synchronous quasiperiodic motion to
Passing the border of the synchronization region with in-asynchronous SNA resembles the one described in[REf.
creasing (which corresponds to entering the regiéf)  where the transition to SNA in some other map has been

0.8
0.6 4

0.4+

0.2

0.0 0.2 0.4 0.6 0.8 1.0
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FIG. 8. Blowout transition from two synchronized invariant curves to nonsynchronized chaotic attracto®.@B8« = 3.22 represented
by path IV in Fig. 4. Paneléa) and(b) show the synchronized two invariant curvesat 0.21 as projection onto the(y) plane and onto
they-6 plane, respectively. Panels) and (d) show the nonsynchronized chaotic attractopat0.23 as projection onto they plane and
onto they-6 plane after the blowout transition. Parte] shows the dependence of Lyapunov exponantgdasheg, A (dotted, and\ nax
(solid) on the bifurcation parameter. The arrows mark the values of the bifurcation parghfetewhich the attractors have been calculated.

discussed in terms of a blowout bifurcation. Increasflg chaotic motion as synchronized regimes. The corresponding
further, we observe first a transition from SNA to an asyn-transitions to asynchronous motion are sketched in Fig. 4 by
chronous chaotic attractor of same type as shown in k@y. 9 paths VI and VII. Path VI starts from synchronized chaotic
and 9d) and second a transition from the small two-piecemotion and leads to an asynchronous chaotic attractor due to
chaotic attractor to a big one-piece attractor similar to thehe usual blowout bifurcatiofFig. 11). This type of transi-
interior crisislike transition in Fig. @ and 9f). The latter  tion from synchronized to nonsynchronized chaotic attractor
one grows for increasingd and disappears finally in a has been widely investigat¢@2].
boundary crisis. Path VII in Fig. 4 represents again a different type of
In Sec. Il we have found chaotic as well as strange nonblowout transition, namely, from synchronized SNA to asyn-
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FIG. 9. Blowout transition from two synchronized invariant curves to a honsynchronized chaotic attractd).@8x = 3.35 represented
by path V in Fig. 4. Panel&) and(b) show the synchronized attractor consisting of two invariant curvgs=0.16 as projection onto the
(x,y) plane and onto thg-6 plane, respectively. Pangls and(d) show a nonsynchronized chaotic attractoBat0.18 as a projection onto
the x-y plane and onto thg-6 plane after the blowout transition. Pané& and(f) show a nonsynchronized chaotic attractopat0.19 as
a projection onto thex-y plane and onto thg-6 plane after a sudden increase in size. Pdgglshows the dependence of Lyapunov
exponents\; (dashed and\ .4 (solid) on the bifurcation parameter. The arrows mark the values of the bifurcation pargsrietewhich
the attractors have been calculated.

chronous chaotic motiofFig. 12). Before the bifurcation, at  VI. CHARACTERISTICS OF THE DIFFERENT TYPES OF
a=3.51 the maximal Lyapunov exponent coinciding with BLOWOUT TRANSITIONS

the larger one ok, and\ is negative as well as the trans- |5 sec. v we have presented different types of blowout
verse Lyapunov exponent. Thus, the synchronized dynamicansitions from synchronized motion to nonsynchronous

regime is an SNA. The transverse Lyapunov exponent bepne. Two of those transitions we would like to characterize
comes positive ar~3.519, i.e., a blowout bifurcation takes and to compare in more detail. We focus here on transitions
place. After the blowout bifurcation the maximal Lyapunov from synchronized quasiperiodic motion on invariant curves
exponent is positive, too. Therefore, the nonsynchronized ato asynchronous chaotic behavior. Their difference becomes
tractor is chaotic. obvious from the different structure of the asynchronous at-
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FIG. 10. Blowout transition from two synchronized invariant curves to nonsynchronized SHA@D3 = 3.318 represented by path
V in Fig. 4. Panelga) and(b) show the synchronized attractor consisting of two invariant curvgs=20.1785 as projection onto the,§)
plane and onto the- 4 plane, respectively. Pandls and(d) show the nonsynchronized SNAGt0.1805 as a projection onto they plane
and onto the/-6 plane after the blowout transition. Partel shows the dependence of Lyapunov expon&ntsdashedland 4, (solid) on
the bifurcation parameter. The arrows mark the values of the bifurcation paragh&iemhich the attractors have been calculated.

tractor shortly after the blowout bifurcatidmompare Figs. tained for the maximal Lyapunov exponent.,as well[Fig.
8(c), 8(d), and Figs. &), 9(d) and, similarly Figs. 1&), 8(e)].

10(d)]. To compare the two transitions we use two different The other type of blowout bifurcation observed at
measures. Let us first discuss the growth of the attractor ir=3.318 anda=3.35 consists of two different phenomena.
size. To measure quantitatively the size of the attractor beFirst, one observes a small, slowly growing asynchronous
yond the blowout bifurcation, we compute the mean value ottractor with varying3. At some critical value of8, the

the squared distance of pointéx—y)?) in the blown out asynchronous attractor starts to grow rapidly. These two sub-
attractor from the synchronization manifold, the diagoDal sequent bifurcations are illustrated in Fig. (8 for «

For a=3.22 beyond the critical value @, a sudden strong =3.318, where the width of the asynchronous attractor is
growth of the attractor with increasing is observedFig. ~ shown in dependence on the bifurcation paramgteiThe
13(@)]. The same qualitative dependence ®as been ob- blowout transition happens @=0.1795 and the interior cri-
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FIG. 11. Blowout transition from synchronized chaotic attractor to nonsynchronized chaotic attracto®.88,8=0.1 represented by
path VI in Fig. 4. Panelga) and(b) show the synchronized chaotic attractonat 3.533 as projection onto they)-plane and onto thg-6
plane, respectively. Pandls) and(d) show the nonsynchronized chaotic attractorrat3.55 as a projection onto they plane and onto the
y-0 plane after the blowout transition. Pariel shows the dependence of Lyapunov exponant¢dashegi \ (dotted, and\ ya (SOlid) on
the bifurcation parameter. The arrows indicate the values of the bifurcation paramédterwhich the attractors have been calculated.

sislike transition characterized by a change in the speed afous chaos we obtain a scaling according to a power law
the growth of the attractor size occurs @¢=0.1923. Thus

we call this transition only interior crisislike, since in con- ((X—y)2>~(ﬂ—,80)7, (5)
trast to the well studied interior crisj23], we do not obtain

a sudden growth in the size itself but, only in the growth ratewhere 8. denotes the critical value @, where the blowout

of the size. Again the attractor width behaves like theoccurs. Fora=3.22 we computedy=0.15 from a fit of a
Lyapunov exponent if the paramet@gris varied beyond the straight line to the data in double-logarithmic representation
critical value of the blowout bifurcation. For both transitions [Fig. 14@)]. For «=3.318 a similar scaling for the blowout
we obtain a scaling for the growth rate of the asynchronou®ifurcation has been found, thus we focus on the second
attractor beyond the blowout bifurcation. For the blowouttransition. For the interior crisislike transition the scaling of
bifurcation from synchronized quasiperiodicity to asynchro-the mean size of the asynchronous attractor is linear. The
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FIG. 12. Blowout transition from synchronized SNA to nonsynchronized chaotic attracter@03 8= 0.01 represented by path VIl in
Fig. 4. Panelga) and(b) show the synchronized SNA at=3.51 as a projection onto the,f/) plane and onto thg-6 plane, respectively.
Panels(c) and(d) show the nonsynchronized chaotic attractorrat3.53 as a projection onto they plane and onto thg-6 plane after the
blowout transition. Pandk) shows the dependence of Lyapunov exponantgdashedl and\ ,,,, (solid) on the bifurcation parameter. The
arrows indicate the values of the bifurcation parametefor which the attractors have been calculated.

) Synchronized " Nonsynchronized

different growth rates correspond to different slopp€sy.  cessive bursts larger than the threshold. So, we can compute

14(b)]. The characteristic slopes for this transition @t the average time the trajectory spends close to the synchro-

=3.318 are 0.05 and 3.3. nization manifold. Figure 1) represents the average length
Another approach to characterize the blowout transitiong ) of laminar phases in dependence on the parameter mis-

is to consider the intermittent behavior after the synchro-match— 3. In the log-log plot these data fit to a straight

nized attractor became transversally unstdl@8]. Figure line, justifying again a power law dependence

15(a) represents the time serigs,—y,| in dependence on

the iteration numben. Laminar phases correspond to the (H~(B—Bo)" ©6)

synchronized state, whereas bursts correspond to nonsyn- “

chronous states. By defining a threshold, we are able to de-

termine the length- of the laminar phases between two suc-with the critical exponenty=0.452 ata=3.22.
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FIG. 13. Width of the asynchronous attractors in dependence on the bifurcation pargnfetés) «=3.22 and(b) «=3.318.
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FIG. 14. Scaling behavior of the blowout transitiofe: The width of the asynchronous attractor e+ 3.22 depends on the parameter
mismatchB— B, according to a power lawb) For «=3.318 only the interior crisislike transition is shown. The small slope 0.05 charac-
terizes the attractor growth rate of the small chaotic attractor, while the large slope 3.3 corresponds to the growth rate of the big attractor.
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FIG. 15. Scaling of laminar phases for the blowout bifurcationvat3.22: (a) time
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FIG. 16. Scaling of laminar phases for interior crisislike transitiomat3.318: (a) time seried|x,—y,|, (b) distribution of mean time
intervals of laminar phase$;) scaling of the duration of laminar phases.

026202-13



NEUMANN et al. PHYSICAL REVIEW E 67, 026202 (2003

For the interior crisislike transition at=3.318 andB  asynchronous attractor as a result of a blowout bifurcation.
~0.1923 one can consider again the intermittent behaviolWe have analyzed the possible types of blowout transition
Now the laminar phases correspond to the situation that thisom different synchronized dynamical regimes to desyn-
trajectory spends time on the nonsynchronous chaotic attrachronized atttractors. Beside the usual blowout from syn-
tor restricted to the narrow region near the synchronizatiorthronized to nonsynchronized chaotic motion we have de-
manifold [Fig. 16a)]. The average time of laminar phases scribed two types of blowout transitions in detail. One of
depends on the parameter mismatch again via a power lathem is the blowout from synchronized quasiperiodic motion
[Eqg. (5)], with the characteristic exponeni=1.03 at « to a nonsynchronized chaotic attractor. The other corre-

=3.318[Figs. 18b), 16(c)]. sponds to a transition from synchronized SNA to a nonsyn-
chronized chaotic attractor. Both transitions can be identified
VIl. CONCLUSIONS by a change in sign of the transverse Lyapunov exponent

only. Other characteristics known from usual blowout bifur-

We have studied the influence of quasiperiodic driving oncations, such as the loss of transverse stability of embedded
synchronization phenomena as well as on desynchronizatiognstable periodic orbits cannot be used because of the lack of
To this end, we have considered a system of two coupledych orbits. Additionally, we found an interior crisislike tran-
quasiperiodically forced logistic maps. The dynamics in thesjtion in which the growth rate of the blown out attractor
synchronization region can be described by a single quasizhanges discontinously. The exact mechanism of this transi-
eriodically forced logistic map. Therefore, the effects of thetjon is not fully understood and needs some further investi-
quasiperiodic driving on the synchronous motion are theyation which is under way. Furthermore, we have identified a
same as known for the single systgh6]: periodic orbits are  vertex point in parameter space, where four different bifur-
transformed into invariant curves, hence the period-doublingation lines meet. On one hand the transverse instability of
cascade is converted into a doubling cascade of invariarhe synchronous attractor in the diagonal becomes a blowout
curves, where the doublings are delayed as the forcing ankifurcation. On the other hand the merging crisis of the asyn-
plitude increases. Furthermore, the doubling cascade is truthronous attractor meets the boundary crisis of the asynchro-
cated, i.e., branches of the treelike structured synchronizationoyus attractor. At the vertex point itself the synchronous as
region are cutoff, first those corresponding to invariantwell as the asynchronous attractor are involved in the bifur-
curves of higher periodicities. Thus, with increasing forcingcation.
amplitude the synchronization region becomes smaller so Finally we would like to remark that all bifurcations de-
that it becomes more and more difficult to obtain synchro-scribed in this paper can also occur in invertible maps and
nized motion. For sufficiently high forcing amplitudes the thys also in flows, where quasiperiodic motion occours on
synchronization is suppressed. Beside quasiperiodic motiofyariant tori. Noninvertibility is not the reason for any of the
on invariant curves, we find strange nonchaotic and chaotigjfurcations analyzed in this paper. It has been used only to
behavior in the synchronization region. With respect to dekeep the analysis as simple as possible.
synchronization, coexisting asynchronous attractors in the
synchronization region play an important role for the type of
transition to nonsynchronized motion. In case of their exis- ACKNOWLEDGMENTS
tence, the trajectory approaches the asynchronous attractor as
the synchronized state loses the transverse stability. More We would like to thank P. Ashwin, E. Ott, O. Popovych,
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