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Synchronization and desynchronization under the influence of quasiperiodic forcing
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We study the influence of quasiperiodic forcing on synchronization and desynchronization using two
coupled quasiperiodically forced logistic maps as a paradigm. We show that due to the forcing the synchroni-
zation region in parameter space shrinks. The loss of transverse stability of the synchronized attractors leads to
desynchronization. Two types of such blowout bifurcations are described, namely, the blowout bifurcations of
synchronized quasiperiodic motion on invariant curves and synchronized strange nonchaotic attractors, both
yielding desynchronized chaotic attractors.
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I. INTRODUCTION

Synchronization phenomena of coupled chaotic syste
as well as mechanisms leading to desynchronization h
attracted much interest in the last decade of the second
lenium. Considering interacting identical chaotic oscillato
different synchronization phenomena can be observed in
pendence on the coupling strength: We speak about p
synchronization@1# if the oscillators adjust their phases su
that the mean frequencies of the chaotic oscillations co
cide, whereas their amplitudes vary chaotically in time. F
increased coupling strength one can achieve a complete
chronization@2#. In this case, not only the phases but also
amplitudes develop in precisely the same way. The motio
the two coupled systems takes place in an invariant subs
of the state space. The concept of complete synchroniza
has been generalized by releasing the requirements o
actual equality of the variables of the coupled systems.
stead, in general synchronization, the dynamical variable
both subsystems obey a certain functional dependency@3,4#.
Not only the types of synchronization were of interest, b
also the mechanisms leading to the loss of chaotic sync
nization. Assuming the existence of a completely synch
nized chaotic attractor, then different invariant sets in
invariant subspace can become transversally unstable in
transition to a desynchronized state: First, particular unsta
periodic orbits embedded in the synchronized chaotic att
tor lose their transverse stability giving rise to the emerge
of riddled basins~riddling bifurcation @5,7#!. Second, the
whole attractor in the invariant subspace loses its transv
stability in average leading to a blowout bifurcation@6,7#.

In this paper we study the influence of quasiperiodic dr
ing on synchronization and the different transitions to a n
synchronized state. As a first approach it has been shown
synchronization can appear in quasiperiodically forced s
tems in Ref. @8#. We use two quasiperiodically force
coupled logistic maps as a paradigm. The general dynam
of two coupled logistic maps without forcing has been e
tensively investigated@9–11#. In Ref. @12# this system has
been considered as an application to interdependent o
economics. Our main focus is the study of the changes in
1063-651X/2003/67~2!/026202~15!/$20.00 67 0262
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bifurcation phenomena due to the influence of a quasip
odic driving force.

In quasiperiodically forced systems a special type of
tractors, namely, strange nonchaotic attractors~SNAs!
present a characteristic dynamical behavior in between re
larity and chaos. This type of dynamics has been first
scribed by Grebogiet al. @13# and can be defined as a close
invariant attractive set which is not piecewise differentiab
and for which the typical orbits have nonpositive Lyapun
exponents. Thus, SNAs have a fractal structure like us
strange attractors, but there does not exist any sensit
with respect to changes in the initial conditions: no expon
tial divergence of trajectories can be observed. The prop
of nondifferentiability has been used in Ref.@14# to construct
a method for distinguishing between SNAs and regular
tractors in quasiperiodically forced systems. This method
lies on the sensitivity of SNAs with respect to the phase
the external force and is used here to identify SNAs.~To be
more specific: In contrast to regular attractors, the deriva
with respect to the phase of the external driving grows
boundedly in the case of SNA. In the present paper
strangeness of nonchaotic attractors is detected via the c
rion of phase sensitivity.! The emergence of SNAs can b
expected in the synchronized state as well as in the non
chronized one.

The coexistence of synchronized and nonsynchronized
tractors in some regions of parameter space is importan
establishing the type of transition to a nonsynchronized st
The transition occurs via a blowout bifurcation when t
synchronized attractor loses its transverse stability. The
existence of two SNAs, synchronized and nonsynchroni
has been demonstrated recently, for a small range of par
eters in the system of two coupled quasiperiodically forc
logistic maps@15#. In contrast to our present investigations
nonlinear coupling and a nonsymmetric quasiperiodic ex
nal forcing has been applied in Ref.@15#.

Due to the presence of quasiperiodic forcing we obt
changes in the dynamical behavior and in the types of tr
sitions to a nonsynchronized state. The dynamics of coup
quasiperiodically forced maps is very rich: quasiperiodic b
havior with two and three incommensurate frequenci
phase locking phenomena, strange nonchaotic and cha
©2003 The American Physical Society02-1
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NEUMANN et al. PHYSICAL REVIEW E 67, 026202 ~2003!
attractors can be found. Moreover, the dynamics can t
place on an invariant subspace, the diagonal planeD
5$(x,y,u):x5y%, x andy denote the states of the two su
systems, respectively, andu is the phase of the external driv
ing. In this invariant subspace the motion of both coup
maps is fully synchronized. We focus on this synchroniz
behavior and discuss the possible mechanisms for the lo
synchronization when the synchronized state becomes tr
versally unstable. We show, in particular, which transitio
from synchronized to nonsynchronized behavior can be
served in the case ofnonchaoticattractors inD.

The outline of the paper is the following. In Sec. II w
introduce the model and investigate the influence of
strength of quasiperiodic driving on the size and the shap
the synchronization region in parameter space and on b
cations taking place for synchronized attractors. Then
Sec. III we study, in more detail, which types of attracto
can occur in the synchronization region and use the ph
sensitivity method@14# for distinguishing between regula
motion and SNAs. We find that the synchronized motion c
coexist with the nonsynchronized one. Parameter region
multistability are obtained in Sec. IV. The bifurcations of t
synchronized attractors under quasiperiodic forcing lead
to a loss of synchronization are described in Sec. V.
discuss several types of blowout bifurcations whose cha
teristics will be analyzed in Sec. VI. In particular, we dem
onstrate two types of this bifurcation, namely, transitio
from synchronized quasiperiodic motion and synchroniz
SNA to nonsynchronized chaotic attractors. Finally, we su
marize our findings in Sec. VII.

II. MODEL

We consider a system of two coupled logistic maps wh
are externally forced,

xn115axn~12xn!1b~yn2xn!1e cos~2pun!,

yn115ayn~12yn!1b~xn2yn!1e cos~2pun!, ~1!

un115un1v~mod 1!,

where the parametera is the strength of nonlinearity,b is
the coupling strength,e andv are amplitude and frequenc
of the external driving force, respectively. Throughout t
paper the frequencyv is chosen to be equal to the inverse
the golden meanv5(A521)/2, i.e., the driving is quasip
eriodic.

In general, the dynamics takes place in the thr
dimensional phase space (x,y,u). Stable synchronized dy
namics can be observed in an invariant two-dimensional s
spaceD5$(x,y,u):x5y%. Such synchronous motion can b
found in some region of parametersa, b, ande. Thus, the
synchronized attractor lives on the diagonal planeD, and the
dynamics on it is governed by the single logistic map w
quasiperiodic forcing

xn115axn~12xn!1e cos~2pun!,

un115un1v~mod 1!. ~2!
02620
e

d
d
of
s-

s
b-

e
of
r-
n

se

n
of

g
e
c-

s
d
-

h

-

b-

For zero amplitude of the quasiperiodic driving,e50, the
two equations of Eq.~2! become uncoupled. We obtain th
well-known logistic mapxn115axn(12xn) which displays
a period-doubling cascade to chaos as the bifurcation par
etera increases. Thus, fore50 the synchronized dynamic
is either regular~periodic! or chaotic. As soon as the drivin
is switched on (e.0), the periodic orbitsPk of the logistic
maps are transformed into invariant curves mapped into e
other cyclically with the periodk. We will denote them by
kIC. We would like to note that in invertible maps the sam
types of transitions are expected to occur though their st
is a bit more complicated. In this case the invariant curves
invertible maps can be considered as Poincare´ sections of
tori in flows in contrast to the invariant curves observed
noninvertible maps. But in the literature@16,17# often the
term torus is used for an invariant curve also in noninverti
maps. To avoid confusion, we use the terms ‘‘torus’’ a
‘‘torus doubling’’ in the following only if we refer to articles
where these terms are used.

The dynamics of the quasiperiodically forced logistic m
has been investigated from different points of view in Re
@16,17#. Heagy and Hammel@16# have described notable e
fects of the quasiperiodic driving, e.g., bifurcation points
torus doubling are shifted to larger values ofa, the threshold
for chaos is lowered and the torus-doubling cascade is t
cated. Kuznetsovet al. @17# investigate in detail the termina
point of torus doubling depending on the forcing amplitud
We will show that the effects of quasiperiodic forcing in th
system of two coupled logistic maps are similar to those o
single map under the influence of an external quasiperio
forcing. Moreover, beside quasiperiodic and chaotic mot
we find the existence of strange nonchaotic attractors~SNA!
as a characteristic type of synchronized dynamics cause
quasiperiodic driving.

For system ~1!, we determined the regions in th
(a,b)-parameter plane where synchronized dynamics
occur for different values of the external forcing amplitu
e. To this end, the transverse Lyapunov exponent is ca
lated as

l'5 lim
N→`

1

N (
n51

N

lnu f a8 ~xn!22bu, ~3!

where f a8 denotes the derivative of the logistic functio
f a(x)5ax(12x) with respect tox. Negative values ofl'

characterize the region in parameter space where the
chronized attractor is at least weakly stable or stable in M
nor sense@18#. In the case of a synchronized chaotic attrac
A(s) weak stability means thatA(s) is transversally stable in
average, i.e. almost all trajectories onA(s) are transversally
stable. For a nonchaotic attractor onD, weak stability coin-
cides with Lyapunov stability.

To characterize the inner dynamics of the synchroniz
attractor, the longitudinal Lyapunov exponent

l i5 lim
N→`

1

N (
n51

N

lnu f a8 ~xn!u ~4!
2-2
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FIG. 1. The region of synchronized motion in the (a,b)-parameter plane~chaos–dark gray! for ~a! e50 ~periodic orbits—light gray!,
~b! e50.003~invariant curves—light gray!, ~c! e50.03, and~d! e50.1. The little box of panel~c! is shown enlarged in Fig. 2
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has to be calculated. It measures the strength of expone
divergence of trajectories along the diagonal. The synch
nized attractor is chaotic if the longitudinal Lyapunov exp
nent is positive. With the variation of a system parameter
synchronized attractor loses its transverse stability leadin
nonsynchronized behavior. This bifurcation, called blowo
bifurcation, occurs whenl' becomes positive.

Afterwards, the synchronized invariant set is a repel
i.e., typical trajectories will be repelled from it and will ap
proach some other attractor in phase space or will diverg
infinity. Blowout bifurcations are detectable by monitorin
the transverse Lyapunov exponent when the system pa
eter is varied:l' changes its sign from negative to positiv
at the moment of blowout bifurcation. The stable dynami
regime after the bifurcation can be characterized by the
Lyapunov exponents of the new born asynchronous attra
A(a). If the larger of both Lyapunov exponents is positi
(lmax.0) thenA(a) is a chaotic attractor.

To illustrate the effects of external quasiperiodic drivi
on system~1!, we restrict ourselves on four values of th
driving amplitudee. Figures 1~a!, 1~b!, 1~c! and 1~d! show
the region in the (a,b)-parameter plane where the synchr
nized attractor is weakly stable for driving amplitudese
50, e50.003,e50.03, ande50.1, respectively. This syn
chronization region has a treelike structure, whose s
slowly decreases, and small branches are cutoff with incr
ing external driving forcee. In the unforced casee50, the
02620
tial
o-
-
e
to
t

r,

to

m-

l
o
or

e
s-

synchronized attractor@gray region in Fig. 1~a!# is either a
periodic orbit~light gray region! or a chaotic attractor~dark
gray region!. The period-doubling cascade is infinite and t
lines of the doubling bifurcation are parallel to theb axis at
values ofa where the period doublings in the logistic ma
take place. The synchronization region has a complica
internal structure and includes islands which correspond
the periodic windows of the mapf a .

For e.0 the synchronized periodic orbits are transform
into smooth invariant curves of corresponding periodici
We observe doubling bifurcations of invariant curves inste
of period-doubling bifurcations of periodic orbits. Figure
1~b!, 1~c!, and 1~d! demonstrate that the doublings of invar
ant curves are delayed withe.0, i.e., they occur at large
values ofa. As it is known@17#, the doubling cascade of tor
~in our example: invariant curves! is truncated. This trunca
tion corresponds to a successive cutoff of the branches o
tree-like synchronization region. Depending on the amp
tude of quasiperiodic drivinge, branches of the tree are cu
off, first those corresponding to the stability region of inva
ant curves with higher periodicity. The transition to chaos
SNA can be observed just inside the region of weak stabi
Note also that even at small forcing strengthe50.003 most
islands of weak stability, separated from the main bifurcat
tree, vanish. Moreover, due to the cutoff of the branches
the synchronization tree, the synchronization region shri
in size. As a consequence it becomes more and more diffi
2-3
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NEUMANN et al. PHYSICAL REVIEW E 67, 026202 ~2003!
to obtain synchronized motion when the forcing is increas
For e50.1 the synchronization region ends already ata
'3.5 @Fig. 1~d!#, and fore50.3 synchronization cannot b
found at all. Thus, the synchronized motion is suppressed
a sufficiently high amplitude of quasiperiodic forcing.

III. SYNCHRONIZED DYNAMICS

There are different types of synchronized dynamics, i
dynamics on the diagonal plane. It is governed by sys
~2!, and hence does not depend on the coupling parameteb.
Which type of synchronized attractor occurs, depends, ife is
fixed, on the value of nonlinearity parametera only. Lines of
doubling bifurcations of smooth invariant curves are para
to theb axis ~see Fig. 1!.

To discuss the attractor types in detail we choose a fi
driving amplitudee, saye50.03. The doubling cascade o
invariant curves is truncated just before the second doubl
We find in the synchronization region either 1 or 2 invaria
curves~1IC or 2IC!, or SNAs or chaotic behavior. Figure
shows a blowup of the little box in Fig. 1~c! which includes
transitions from quasiperiodicity~light gray! via SNA ~gray!

FIG. 2. Enlarged box from Fig. 1~c!, different gray scale denote
different dynamical behavior, two invariant curves 2IC~light gray!,
SNA ~gray!, and chaos~dark gray!. The crosses mark the position
for which the representants of the different dynamical behav
have been calculated~see Fig. 3!.
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to chaotic behavior~dark gray!. The regions of different dy-
namical regimes have been estimated by computing the
gitudinal Lyapunov exponent, which is positive for chao
attractors but negative for SNA and quasiperiodic motion.
distinguish between the latter two attractors, both with ne
tive Lyapunov exponent, one has to analyze the sensitivit
the attractor with respect to phase variation of the exter
force. The method to apply~suggested in Ref.@14#! is based
on the property of SNA to be a nonsmooth~fractal! invariant
set which is not piecewise differentiable~see the definition of
an SNA given in Ref.@13#!. It consists of an attempt to
calculate the derivative with respect to the external pha
This derivative is bound in the case of a smooth attrac
while in the case of SNA, the calculated values of the d
rivative cannot be bound, since this derivative in fact do
not exist. SNA and invariant curves have been distinguis
numerically using this property.

To illustrate the dynamical regimes of system~1!, we
present attractors calculated at three parameter points ma
by crosses in Fig. 2. Figures 3~a!, 3~b!, and 3~c! show char-
acteristic examples of the different types of synchroniz
dynamics, i.e., smooth invariant curves, SNA, and chao
attractor, for three values of the nonlinearity parametera1
53.45, a253.51, a353.53, and coupling parameterb
50.1.

These attractors are~at least! weakly stable, i.e., the trans
verse Lyapunov exponent is less than zero. The invar
curves@Fig. 3~a!# and the SNA@Fig. 3~b!# have also negative
longitudinal Lyapunov exponent while for the chaotic attra
tor @Fig. 3~c!# it is positive.

The mechanisms leading to strange nonchaotic beha
in the system of two coupled quasiperiodically driven log
tic maps are the same as for the single logistic map un
quasiperiodic driving, because the synchronized dynam
takes place in the two-dimensional subspace (x5y,u). The
transition from two-frequency quasiperiodic motion~on 2
invariant curves 2IC! to SNA has been found to be related
the truncated torus-doubling cascade: A collision of t
stable doubled-curve 2IC with its unstable parent 1IC h
been found for the parameter values shown in Fig. 3. W
increasing parametera, the two invariant curves 2IC@Fig.
3~a!# become more wrinkled and come closer to the unsta
invariant curves 1IC from which they were formerly born b

r

by crosses
a
r

FIG. 3. Representants of the dynamics in the region of synchronized dynamics. The panels correspond to the points marked
in the bifurcation diagram in Fig. 2 atb50.1,e50.03, and at different values ofa. Panel~a! shows two invariant curves representing
period-two attractor ata53.45, panel~b! represents a strange nonchaotic attractor ata53.51, and panel~c! represents a chaotic attracto
at a53.53 as possible types of synchronized motion.
2-4
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SYNCHRONIZATION AND DESYNCHRONIZATION UNDER . . . PHYSICAL REVIEW E67, 026202 ~2003!
a doubling bifurcation. At the bifurcation point they finall
collide with the unstable parent in a dense set ofu values but
not in all values ofu. As a result, an SNA is observed@Fig.
3~b!#. Further increasing of the bifurcation parametera leads
to a chaotic attractor@Fig. 3~c!#. Finally, whena is so large
that l' becomes positive, the chaotic attractor in the dia
nal plane loses its transverse stability and the trajectory
ther approaches another attractor outside the diagonal p
~discussed in Sec. V! or diverges to infinity.

It should be mentioned that in general for systems wh
undriven counterparts exhibit a period-doubling cascade
chaos also other mechanisms of transition to SNA are p
sible as the fractalization route to SNA by Nishikawa a
Kaneko@19#, and the intermittency route to SNAs by Pras
et al. @20#.

IV. COEXISTENCE OF SYNCHRONOUS AND
ASYNCHRONOUS MOTION

The coexistence of an attractor outside the diagonal w
the synchronized attractor plays a crucial role for the type
transitions in the moment of a loss of transverse stabi
Therefore, we should first analyze whether there exist att
tors out of the diagonal in an appropriate parameter ra
which contains the curve of synchronization loss. The co
sponding nonsynchronous dynamical behavior might b
quasiperiodic motion on invariant curves as well as cha
or strange nonchaotic behavior.

The gray region in Fig. 4 shows the region of weak s
bility of the synchronized attractor in the (a,b) parameter
plane for e50.03. The horizontal black line atac
'3.023425 denotes the first doubling of invariant curv
(1IC→2IC) in the invariant subspaceD.

FIG. 4. The region of weak stability of synchronized attracto
~coded in same gray scale as in Fig. 2! in the (a,b)-parameter
plane fore50.03 and bifurcation lines of the asynchronous attr
tors.
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The borderline of the gray bifurcation tree corresponds
the transverse instability of the synchronized attractor. Pa
ing this curve by varying the parametersa and/or b, the
dynamics in the diagonal planeD becomes transversally un
stable~the transverse Lyapunov exponentl' becomes posi-
tive!. As a result, either a new asynchronous attractor c
taining the formerly transversally stable synchroniz
solution appears~blowout bifurcation! or the trajectory can
approach another, asynchronous attractor or diverge to in
ity. The regionA2

(a) in Fig. 4 is the region of the existence o
an asynchronous two-piece attractor outside the diago
plane. Thus, the intersection of the synchronization region
two invariant curves~2IC! ~gray! with the regionA2

(a) is a
region of bistability. Depending on the initial condition eith
the synchronous or the asynchronous attractor can be
tained.

For a,ac'3.023 425 the left border of the regionA2
(a)

coincides with the line corresponding to the loss of the tra
verse stability of the synchronized invariant curve 1IC. He
a supercritical transverse doubling takes place. The invar
curve 1IC loses its transverse stability giving rise to t
emergence of an asynchronous two-piece attractor, con
ing of two invariant curves. They map one into another, re
resenting a period-two attractor. Such type of synchroni
tion loss takes place when the border of the bifurcation t
is passed along path I in Fig. 4 .

As already mentioned, for larger values ofa, the trans-
verse instablity curve intersects the existence regionA2

(a) of
the nonsynchronized two-piece attractor. Let us cross
border of the bifurcation tree witha53.1 fixed, andb varied
along path II in Fig. 4. To the left of regionA2

(a) the synchro-
nized invariant curve 1IC, already being unstable along
diagonal, becomes additionally transversally unstable, giv
rise to an asynchronous attractor consisting of two invari
curves. emerged by a subcritical bifurcation from 1IC. Aft
this bifurcation the two invariant curves are not stable, b
they stabilize at the left border ofA2

(a) . Moreover, the loss of
transverse stability of 1IC leads to the emergence of a re
ling tongue that develops from 1IC. Due to the quasiperio
driving, a dense set of tongues~with respect tou) appears,
and the trajectory is transversally repelled from the synch
nized invariant curve. Therefore, after entering the region
bistability ~intersection of regions 2IC andA2

(a)), it depends
on the initial conditions which attractor is approached by
trajectory, the two-frequency quasiperiodic motion on tw
invariant curves either in the diagonal planeD or outsideD.
Figure 5~a! shows the projection of both possible types
attractors onto the (x,y) plane, as well as their basins o
attraction to vizualize the repelling tongue, for parame
values a53.1, b50.06, and fixed driving amplitudee
50.03.

At the parameter valuea53.1 along path II the transvers
instability curve lies inside the regionA2

(a) . Varying b be-
yond the border of the gray region~region of transverse sta
bility of two invariant curves 2IC! all observed trajectories
start to approach the existing asynchronous attractor.
synchronized two invariant curves have lost their transve
stability in a subcritical transverse doubling bifurcation wh

-

2-5
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FIG. 5. Projection of attractors onto the (x,y) plane at parameterse50.03, a53.1, and at different values ofb: ~a! for b50.06
quasiperiodic motion on two invariant curves either synchronized~basin is dark gray! or nonsynchronized~basin is light gray!, ~b! for b
50.22 asynchronous two-piece chaotic attractor, and~c! for b50.3 asynchronous one-piece chaotic attractor arising after the merging o
formerly two-piece attractor. In all examples, the basin of the attractor at infinity is left blank.
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passing the border of the bifurcation tree. For the asynch
nous attractor we find that it undergoes a number of bifur
tions asb increases towards the right border of regionA2

(a)

to become an asynchronous two-piece chaotic attractor.
ure 5~b! shows the chaotic attractor, obtained forb50.22
anda53.1. It grows in size with increasingb and finally the
two pieces merge whenb reaches the right border ofA2

(a) .
Beyond the right border ofA2

(a) we observe an asynchronou
one-piece chaotic attractor including the diagonal planeD.
Attractors of this type exist in the parameter regionA(a)

which is shown in Fig. 4, too. See Fig. 5~c! for an example of
an asynchronous chaotic attractor including the diago
plane at parameter valuesb50.3 anda53.1. The asynchro-
nous attracting set continues to grow in size asb increases
until it finally touches its basin boundary~boundary crisis
line!. After the boundary crisis, the asynchronous attrac
disappears, and the trajectory diverges to infinity.

When following path II after having entered the regio
A2

(a) , we pass two different bifurcation lines meeting at
vertex point (a,b)'(3.2,0.2) in the parameter plane mark
by a fat black dot in Fig. 4. Let us discuss this vertex point
more detail. A schematic representation of this vertex incl
ing all the different bifurcation lines that meet there is sho
in Fig. 6. We have to distinguish two different scenari
when changingb with a fixed above or below the verte
point, respectively. Below the vertex point, fora,3.2, we
cross first the border of the gray synchronization region
ing the line of transverse instability of the synchronous
tractor in the diagonal. After this crossing the synchrono
attractor is unstable and all trajectories are attracted by
asynchronous attractor out of the diagonal, which consist
two pieces. At the second bifurcation line these two pie
merge and a one-piece asynchronous attractor is formed

Above the vertex, fora.3.2, we cross first the right bor
der of the dashed regionA2

(a) inside the gray synchronizatio
region ~Fig. 4! limiting the region of bistability. At this line
the asynchronous attractor out of the diagonal undergo
basin boundary crisis and disappears. To illustrate
boundary crisis, which is different from the boundary cris
beyond which trajectories go to infinity, we present Fig.
02620
o-
-

ig-

al

r

-

-
-
s
e

of
s

a
is

which shows the coexisting synchronized and asynchron
attractors and their basins of attraction for a certainu section
(u50) shortly before the boundary crisis of the asynch
nous attractor at parameter valuesa53.22 andb50.182. To
the right of the region of bistability only the synchronize
attractor 2IC is stable inside the synchronization region~gray
region in Fig. 4!. The second bifurcation line crossed wi
increasingb above the vertex corresponds to the border
the synchronization region. Here, a blowout bifurcation
the synchronized attractor can be observed. This bifurca
leads to an asynchronous attractor which includes the dia
nal and is considered in Sec. V in more detail.

The dashed regionA4
(a) in Fig. 4 marks the region in

(a,b)-parameter plane where the asynchronous four-pi
attractors exist. This type of attractor does not coexist w
synchronized attractors; since the regionA4

(a) does not inter-
sect the gray bifurcation tree. The lower border ofA4

(a) co-
incides with the transverse instability curve of the bifurcati
tree. Passing the curve~for example, along path III in Fig. 4!,
the synchronized two invariant curves become transvers
unstable in a supercritical transverse doubling bifurcat
yielding an asynchronous attractor consisting of four inva
ant curves. Asa increases the attractor undergoes some

FIG. 6. Schematic representation of the four different types
bifurcation lines meeting at the parameter point (a,b)'(3.2,0.2)
marked as a fat black dot in Fig. 4.
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furcations to become an asynchronous four-piece chaotic
tractor. The latter one merges to an asynchronous two-p
chaotic attractor including a part of the diagonal planeD
when entering the regionA(a). The resulting attractor grow
in size asa increases and finally touches its basin bound
and disappears~boundary crisis!. Thus, it is the same topo
logical situation as has been discussed above for the re
A2

(a) .

V. BLOWOUT TRANSITIONS

We have demonstrated in the preceding section, that
chronized attractors can coexist with asynchronous one
an appropriate region of the (a,b)-parameter plane~Fig. 4!.
As already mentioned, the characteristics of bifurcatio
from synchronized to nonsynchronized behavior change
the vertex point considered in Sec. IV. Above the ver
point (a,b)'(3.2,0.2), we find a blowout transition leadin
to a new asynchronous attractor which includes the diago
planeD or some part ofD. Let us discuss first the blowou
transitions from synchronized two invariant curves to a n
synchronized chaotic motion, corresponding to the tran
tions along paths IV and V in Fig. 4.

Along path IV we observe a blowout bifurcation whic
corresponds to a direct transition from synchronized qua
eriodic motion to nonsynchronized chaotic motion~see Fig.
8!. This is to the best of our knowledge a type of blowo
bifurcation which has not been observed in unforced ca
First, the transverse Lyapunov exponentl' is less than zero
as well as the longitudinal Lyapunov exponentl i @Fig. 8~e!#.
Passing the border of the synchronization region with
creasingb ~which corresponds to entering the regionA(a)

FIG. 7. The asynchronous chaotic attractor out of the diago
and its basin of attraction in light gray (e50.03, a53.22, andb
50.182) shortly before its boundary crisis. The two crosses m
the position of the synchronized two invariant curves and their
sin is shown in dark gray. Both attractors~the synchronous and th
asynchronous one! present a period-two attractor. The attractors
well as their basin of attraction are presented for theu sectionu
50.
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along path IV!, the transverse Lyapunov exponentl'

changes its sign. Accordingly, the synchronized two invari
curves become transversally unstable, and we observ
blowout transition to a nonsynchronized attractor. The ma
mal Lyapunov exponentlmax after the transition is positive
hence the asynchronous attractor is a chaotic one. The a
chronous chaotic attractor grows in size asb increases and
vanishes again in a boundary crisis.

For larger values ofa we observe a blowout bifurcation
with different features. This type of transition sketched
path V in Fig. 4 may yield to either an asynchronous chao
attractor or an asynchronous SNA. Let us first consider
case of blowout transition to an asynchronous chaotic att
tor ~Fig. 9!. The longitudinal Lyapunov exponentl i is less
than zero and does not change its value since it does
depend on the varied bifurcation parameterb. It only de-
pends ona which is kept constant along pathV in Fig. 4.
Therefore,l i is omitted in Fig. 9~e!. At b'0.1715, l'

changes its sign from negative to positive. Then, the s
chronized two invariant curves become transversally
stable. The maximal Lyapunov exponentlmax, coinciding
with the transversal one before the blowout transition,
positive but small in a narrow parameter range ofb beyond
the blowout bifurcation curve. The asynchronous chaotic
tractor @Figs. 9~c! and 9~d!# still represents an attractor o
period two, including a part of the diagonal planeD. The size
of this attracting set emerging in a supercritical blowout
furcation from quasiperiodic motion on 2IC is small. It
restricted to a narrow region near the formerly synchroniz
solution. With increasingb, we observe a relatively sudde
growth in the magnitude of the maximal Lyapunov expone
lmax which corresponds to a second bifurcation. Beyond t
bifurcation the asynchronous chaotic attractor increa
quickly in size. Additionally, it consists now only of on
piece including the diagonal planeD @Figs. 9~e! and 9~f!#.
This bifurcation looks like an interior crisislike phenomeno
but seems to have some different properties as expla
below. A further increase ofb leads to a further growth o
the attractor size until the boundary crisis is reached. A
the boundary crisis all observed trajectories diverge to in
ity.

For slightly different values ofa, the previously de-
scribed blowout transition~close to path V in Fig. 4! can be
also of another type. The blowout transition to an asynch
nous attractor can go via SNA, as illustrated by Figs. 10~a!–
10~e!. By increasingb we observe again a blowout trans
tion, the transverse Lyapunovl' exponent becomes positive
The maximal Lyapunov exponent coincides with the tra
verse one before the blowout bifurcation. After the bifurc
tion, lmax becomes negative again in a narrow interval ofb.
The attractor after the transition has a strange geomet
structure, representing a period-two SNA including a part
the diagonal planeD. It is restricted to a very narrow regio
aroundD. Note, that the magnitude of Lyapunov exponen
is in the order of 1023. Moreover, the structure of the SNA i
comparable to that of the chaotic attractor considered ab
This transition from synchronous quasiperiodic motion
asynchronous SNA resembles the one described in Ref.@21#
where the transition to SNA in some other map has b
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FIG. 8. Blowout transition from two synchronized invariant curves to nonsynchronized chaotic attractor ate50.03,a53.22 represented
by path IV in Fig. 4. Panels~a! and~b! show the synchronized two invariant curves atb50.21 as projection onto the (x,y) plane and onto
the y-u plane, respectively. Panels~c! and ~d! show the nonsynchronized chaotic attractor atb50.23 as projection onto thex-y plane and
onto they-u plane after the blowout transition. Panel~e! shows the dependence of Lyapunov exponentsl' ~dashed!, l i ~dotted!, andlmax

~solid! on the bifurcation parameter. The arrows mark the values of the bifurcation parameterb for which the attractors have been calculate
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discussed in terms of a blowout bifurcation. Increasingb
further, we observe first a transition from SNA to an asy
chronous chaotic attractor of same type as shown in Fig.~c!
and 9~d! and second a transition from the small two-pie
chaotic attractor to a big one-piece attractor similar to
interior crisislike transition in Fig. 9~e! and 9~f!. The latter
one grows for increasingb and disappears finally in a
boundary crisis.

In Sec. III we have found chaotic as well as strange n
02620
-

e

-

chaotic motion as synchronized regimes. The correspond
transitions to asynchronous motion are sketched in Fig. 4
paths VI and VII. Path VI starts from synchronized chao
motion and leads to an asynchronous chaotic attractor du
the usual blowout bifurcation~Fig. 11!. This type of transi-
tion from synchronized to nonsynchronized chaotic attrac
has been widely investigated@22#.

Path VII in Fig. 4 represents again a different type
blowout transition, namely, from synchronized SNA to asy
2-8
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FIG. 9. Blowout transition from two synchronized invariant curves to a nonsynchronized chaotic attractor ate50.03,a53.35 represented
by path V in Fig. 4. Panels~a! and~b! show the synchronized attractor consisting of two invariant curves atb50.16 as projection onto the
(x,y) plane and onto they-u plane, respectively. Panels~c! and~d! show a nonsynchronized chaotic attractor atb50.18 as a projection onto
thex-y plane and onto they-u plane after the blowout transition. Panels~e! and~f! show a nonsynchronized chaotic attractor atb50.19 as
a projection onto thex-y plane and onto they-u plane after a sudden increase in size. Panel~g! shows the dependence of Lyapuno
exponentsl' ~dashed! andlmax ~solid! on the bifurcation parameter. The arrows mark the values of the bifurcation parameterb for which
the attractors have been calculated.
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chronous chaotic motion~Fig. 12!. Before the bifurcation, a
a53.51 the maximal Lyapunov exponent coinciding wi
the larger one ofl' andl i is negative as well as the tran
verse Lyapunov exponent. Thus, the synchronized dynam
regime is an SNA. The transverse Lyapunov exponent
comes positive ata'3.519, i.e., a blowout bifurcation take
place. After the blowout bifurcation the maximal Lyapuno
exponent is positive, too. Therefore, the nonsynchronized
tractor is chaotic.
02620
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VI. CHARACTERISTICS OF THE DIFFERENT TYPES OF
BLOWOUT TRANSITIONS

In Sec. V we have presented different types of blowo
transitions from synchronized motion to nonsynchrono
one. Two of those transitions we would like to character
and to compare in more detail. We focus here on transiti
from synchronized quasiperiodic motion on invariant curv
to asynchronous chaotic behavior. Their difference becom
obvious from the different structure of the asynchronous
2-9
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FIG. 10. Blowout transition from two synchronized invariant curves to nonsynchronized SNA ate50.03,a53.318 represented by pat
V in Fig. 4. Panels~a! and~b! show the synchronized attractor consisting of two invariant curves atb50.1785 as projection onto the (x,y)
plane and onto they-u plane, respectively. Panels~c! and~d! show the nonsynchronized SNA atb50.1805 as a projection onto thex-y plane
and onto they-u plane after the blowout transition. Panel~e! shows the dependence of Lyapunov exponentsl' ~dashed! andlmax ~solid! on
the bifurcation parameter. The arrows mark the values of the bifurcation parameterb for which the attractors have been calculated.
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tractor shortly after the blowout bifurcation@compare Figs.
8~c!, 8~d!, and Figs. 9~c!, 9~d! and, similarly Figs. 10~c!,
10~d!#. To compare the two transitions we use two differe
measures. Let us first discuss the growth of the attracto
size. To measure quantitatively the size of the attractor
yond the blowout bifurcation, we compute the mean value
the squared distance of points^(x2y)2& in the blown out
attractor from the synchronization manifold, the diagonalD.
For a53.22 beyond the critical value ofb, a sudden strong
growth of the attractor with increasingb is observed@Fig.
13~a!#. The same qualitative dependence onb has been ob-
02620
t
in
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f

tained for the maximal Lyapunov exponentlmax as well@Fig.
8~e!#.

The other type of blowout bifurcation observed ata
53.318 anda53.35 consists of two different phenomen
First, one observes a small, slowly growing asynchron
attractor with varyingb. At some critical value ofb, the
asynchronous attractor starts to grow rapidly. These two s
sequent bifurcations are illustrated in Fig. 13~b! for a
53.318, where the width of the asynchronous attracto
shown in dependence on the bifurcation parameterb. The
blowout transition happens atb'0.1795 and the interior cri-
2-10
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FIG. 11. Blowout transition from synchronized chaotic attractor to nonsynchronized chaotic attractor ate50.03,b50.1 represented by
path VI in Fig. 4. Panels~a! and~b! show the synchronized chaotic attractor ata53.533 as projection onto the (x,y)-plane and onto they-u
plane, respectively. Panels~c! and~d! show the nonsynchronized chaotic attractor ata53.55 as a projection onto thex-y plane and onto the
y-u plane after the blowout transition. Panel~e! shows the dependence of Lyapunov exponentsl' ~dashed!, l i ~dotted!, andlmax ~solid! on
the bifurcation parameter. The arrows indicate the values of the bifurcation parametera, for which the attractors have been calculated.
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sislike transition characterized by a change in the spee
the growth of the attractor size occurs atb'0.1923. Thus
we call this transition only interior crisislike, since in con
trast to the well studied interior crisis@23#, we do not obtain
a sudden growth in the size itself but, only in the growth r
of the size. Again the attractor width behaves like t
Lyapunov exponent if the parameterb is varied beyond the
critical value of the blowout bifurcation. For both transition
we obtain a scaling for the growth rate of the asynchron
attractor beyond the blowout bifurcation. For the blowo
bifurcation from synchronized quasiperiodicity to asynch
02620
of

e

s
t
-

nous chaos we obtain a scaling according to a power law

^~x2y!2&;~b2bc!
g, ~5!

wherebc denotes the critical value ofb, where the blowout
occurs. Fora53.22 we computedg50.15 from a fit of a
straight line to the data in double-logarithmic representat
@Fig. 14~a!#. For a53.318 a similar scaling for the blowou
bifurcation has been found, thus we focus on the sec
transition. For the interior crisislike transition the scaling
the mean size of the asynchronous attractor is linear.
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FIG. 12. Blowout transition from synchronized SNA to nonsynchronized chaotic attractor ate50.03,b50.01 represented by path VII in
Fig. 4. Panels~a! and~b! show the synchronized SNA ata53.51 as a projection onto the (x,y) plane and onto they-u plane, respectively.
Panels~c! and~d! show the nonsynchronized chaotic attractor ata53.53 as a projection onto thex-y plane and onto they-u plane after the
blowout transition. Panel~e! shows the dependence of Lyapunov exponentsl' ~dashed! andlmax ~solid! on the bifurcation parameter. Th
arrows indicate the values of the bifurcation parametera, for which the attractors have been calculated.
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different growth rates correspond to different slopes@Fig.
14~b!#. The characteristic slopes for this transition ata
53.318 are 0.05 and 3.3.

Another approach to characterize the blowout transiti
is to consider the intermittent behavior after the synch
nized attractor became transversally unstable@23#. Figure
15~a! represents the time seriesuxn2ynu in dependence on
the iteration numbern. Laminar phases correspond to th
synchronized state, whereas bursts correspond to non
chronous states. By defining a threshold, we are able to
termine the lengtht of the laminar phases between two su
02620
s
-

yn-
e-
-

cessive bursts larger than the threshold. So, we can com
the average time the trajectory spends close to the sync
nization manifold. Figure 15~b! represents the average leng
^t& of laminar phases in dependence on the parameter
matchb2bc . In the log-log plot these data fit to a straig
line, justifying again a power law dependence

^t&;~b2bc!
2g, ~6!

with the critical exponentg50.452 ata53.22.
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FIG. 13. Width of the asynchronous attractors in dependence on the bifurcation parameterb for ~a! a53.22 and~b! a53.318.

FIG. 14. Scaling behavior of the blowout transitions:~a! The width of the asynchronous attractor fora53.22 depends on the paramet
mismatchb2bc according to a power law.~b! For a53.318 only the interior crisislike transition is shown. The small slope 0.05 cha
terizes the attractor growth rate of the small chaotic attractor, while the large slope 3.3 corresponds to the growth rate of the big

FIG. 15. Scaling of laminar phases for the blowout bifurcation ata53.22: ~a! time seriesixn2yni , ~b! distribution of mean time
intervals of laminar phases,~c! scaling of the duration of laminar phases.

FIG. 16. Scaling of laminar phases for interior crisislike transition ata53.318: ~a! time seriesixn2yni , ~b! distribution of mean time
intervals of laminar phases,~c! scaling of the duration of laminar phases.
026202-13
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For the interior crisislike transition ata53.318 andb
'0.1923 one can consider again the intermittent behav
Now the laminar phases correspond to the situation that
trajectory spends time on the nonsynchronous chaotic at
tor restricted to the narrow region near the synchroniza
manifold @Fig. 16~a!#. The average time of laminar phas
depends on the parameter mismatch again via a power
@Eq. ~5!#, with the characteristic exponentg51.03 at a
53.318@Figs. 16~b!, 16~c!#.

VII. CONCLUSIONS

We have studied the influence of quasiperiodic driving
synchronization phenomena as well as on desynchroniza
To this end, we have considered a system of two coup
quasiperiodically forced logistic maps. The dynamics in
synchronization region can be described by a single qua
eriodically forced logistic map. Therefore, the effects of t
quasiperiodic driving on the synchronous motion are
same as known for the single system@16#: periodic orbits are
transformed into invariant curves, hence the period-doub
cascade is converted into a doubling cascade of invar
curves, where the doublings are delayed as the forcing
plitude increases. Furthermore, the doubling cascade is t
cated, i.e., branches of the treelike structured synchroniza
region are cutoff, first those corresponding to invaria
curves of higher periodicities. Thus, with increasing forci
amplitude the synchronization region becomes smaller
that it becomes more and more difficult to obtain synch
nized motion. For sufficiently high forcing amplitudes th
synchronization is suppressed. Beside quasiperiodic mo
on invariant curves, we find strange nonchaotic and cha
behavior in the synchronization region. With respect to
synchronization, coexisting asynchronous attractors in
synchronization region play an important role for the type
transition to nonsynchronized motion. In case of their ex
tence, the trajectory approaches the asynchronous attrac
the synchronized state loses the transverse stability. M
interesting is the case if no asynchronous attractors coe
with synchronized ones. Then the loss of transverse stab
of the synchronous attractor leads to the emergence of a
ev

r-

ni

.

.
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asynchronous attractor as a result of a blowout bifurcati
We have analyzed the possible types of blowout transit
from different synchronized dynamical regimes to desy
chronized atttractors. Beside the usual blowout from s
chronized to nonsynchronized chaotic motion we have
scribed two types of blowout transitions in detail. One
them is the blowout from synchronized quasiperiodic mot
to a nonsynchronized chaotic attractor. The other co
sponds to a transition from synchronized SNA to a nons
chronized chaotic attractor. Both transitions can be identifi
by a change in sign of the transverse Lyapunov expon
only. Other characteristics known from usual blowout bifu
cations, such as the loss of transverse stability of embed
unstable periodic orbits cannot be used because of the lac
such orbits. Additionally, we found an interior crisislike tra
sition in which the growth rate of the blown out attract
changes discontinously. The exact mechanism of this tra
tion is not fully understood and needs some further inve
gation which is under way. Furthermore, we have identifie
vertex point in parameter space, where four different bif
cation lines meet. On one hand the transverse instability
the synchronous attractor in the diagonal becomes a blow
bifurcation. On the other hand the merging crisis of the as
chronous attractor meets the boundary crisis of the async
nous attractor. At the vertex point itself the synchronous
well as the asynchronous attractor are involved in the bif
cation.

Finally we would like to remark that all bifurcations de
scribed in this paper can also occur in invertible maps a
thus also in flows, where quasiperiodic motion occours
invariant tori. Noninvertibility is not the reason for any of th
bifurcations analyzed in this paper. It has been used onl
keep the analysis as simple as possible.
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